
Theories of impurity resistivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 1493

(http://iopscience.iop.org/0953-8984/3/11/010)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 22:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 3 (1991) 149?-1504. Printed in the UK 

Theories of impurity resistivity 

Bo E Semelius and E Soderstrom 
Department of Physics and Measurement Technology, University of Linkoping, S-58183 
Linkoping, Sweden 

Received 25 June 1990, in final form 27 November 1990 

Abstract. For most theories of impurity resistivity the lowest-order results are the same for 
zero temperature, but for finite temperatures there are two different results. The fact that 
the Boltzmann results and the results from force-balance type theories disagree for finite 
temperatures has recently led to increased theoretical activity. In the present work we study 
how the newly proposed generalized Drude approach of Sernelius and the dynamical theory 
of Farvacque compare with other theories. We use the fill1 temperature-dependent random- 
phase approximation screening in our numerical calculations, but also present results with 
the generalized temperature-dependent Thomas-Fermi screening. We furthermore give 
some analytical results where this is possible. We show that inclusion of electron-electron 
scattering in the solution to the Boltzmann equation brings the result closer to that from 
the force-balance type theories: very strong electron-electron scattering results in perfect 
agreement. Numerical results are presented for doped GaAs. 

1. Introduction 

In the present work we discuss transport in the case of impurity scattering, which in 
being elastic is the simplest scattering mechanism to treat theoretically. We neglect 
corrections from multiple scattering and non-linear screening. 

Maybe the most strict formulation of transport theory in solids is the Kubo formula 
for the current-current correlation function. This formulation is, however, best suited 
for the high-frequency conductivity, which is important for the optical properties of 
solids. At zero frequency, which is the limit of interest here, the conductivity is inversely 
proportional to the scattering strength. As a consequence, the conductivity diverges in 
the weak scattering limit and one is bound to sum an infinite series of contributions or 
diagrams if one uses a diagrammatic perturbation expansion. This necessarily means 
that one cannot be fully confident in the results obtained. 

Another method traditionally very much used is to solve the Boltzmann equation. 
The weaknesses with this approach is that the Boltzmann equation is semiclassical and 
that matrix elements for the scattering processes and the screening are introduced in an 
ad hoc manner, i.e. they do not fall into place automatically. However one can show [l] 
that, in the very dilute limit, when electron-electron interaction can be neglected, the 
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Boltzmann equation can be obtainedfrom the equation of motion of the density matrix. 
The solution to the Boltzmann equation can be expressed as 
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U = (ne2/m")(z(k)) (1) 
where the angle bracket stands for the following averaging procedure: 

The time z (k )  in (1) is the transport time, which differs from the lifetime for an electron 
in state k in that the matrix element for the scattering giving rise to z contains a factor 
1 - cos 8, where 8 is the scattering angle. This factor favours large-angle scattering. The 
Boltzmann equation can alternatively be solved with a variational technique [2]. 

In using the Kubo formula with diagrammatic perturbation theory and keeping only 
the lowest-order diagram but using dressed Green functions, one quickly and easily 
obtains (1) but with the lietime instead of the transport time. Using dressed Green 
functions actually means that one sums an infinite series of diagrams. In order to obtain 
the same expression but with the correct transport time, one has to sum all ladder 
diagrams [3]. This is very complicated. The Boltzmann equation (BE) approach and the 
Kubo (K) formula give the same result when the Peierls criterion is satisfied, i.e. when 
E,z/h % 1. 

Thus two quite different approaches give the same result: one method (K) with a 
strict foundation, but which leads to a very cumbersome derivation involving insecure 
approximations; one method (BE) with a somewhat weaker foundation, which is very 
simple to solve and in which the physics is much more transparent. The fact that the 
methods give the same result (especially since the derivations are so different) means a 
strong support for their validity. The belief in the validity of the results from these 
methods is so strong that the results are commonly used to test the outcome from other 
approaches. 

Since the conductivity diverges in the weak scattering limit, people have developed 
theories in which the resistivity is determined directly [4-81. This is to avoid the need for 
infinite summations. In the conductivity derivations discussed above, one starts from an 
applied electric field and calculates the current density. The current density j and the 
electric field E are in the linear reponse regime related according to 

j = a E  (3) 
which defines the conductivity U. In the resistivity derivations one starts with the current 
and calculates the electric field. The electric field E and the current density j are in the 
linear response regime related according to 

E = p j  (4) 
which defines the resistivity p ,  which is the inverse of U. The resistivity from this 
derivation vanishes in the weak scattering limit and the first-order contribution is finite 
and can be written as 

P = (m*/ne2)( l / r (k) )  ( 5 )  
wherezisthesameasin(1). ForT= OKthe resultsfromtheconductivityandresistivity 
formulae agree, but for finite temperatures they do not. The deviation increases with 
temperature and isclose to a factor of3 in the high-temperature limit; equation (5) gives 
a higher resistivity. The reason the results agree at T = 0 K is that in this case the weight 
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in the averaging is a delta function at the Fermi momentum. Another situation in which 
the results would agree is if T were a constant. 

Thus, since both the conductivity and the resistivity formulations can be shown to 
be exact for finite scattering strength, the deviation between their results in the weak 
scattering limit leads to a conflict. This conflict was solved by Huberman and Chester 
[9], who showed that if the proper limits are taken in the derivation of the resistivity 
formula higher-order terms diverge. If all diverging terms are summed the result agrees 
with that from the conductivity formula. One should first assure that the stationary state 
has occurred before the limit of weak scattering is taken. One has to take the limits in 
this order because if the weak scattering limit is taken first the stationary state will never 
be reached. If Huberman and Chester are correct, one did not gain anything in going 
from the conductivity derivation to the resistivity derivation. Also here a sum of infinite 
terms has to be taken. 

Recently a new formulation [10-16] has been proposed, for both the linear response 
regime and for higher field strengths, the so-called force-balance (FB) method. In fB the 
Hamiltonian for the electronic system is separated into one part describing the centre- 
of-mass (CM) motion and one describing the relative motions. It is further assumed that 
the system is in contact with a heat bath that absorbs all excess energy given to the 
electrons through the scattering against the impurities; in the CM system the scattering 
processes are inelastic and the impurities are moving. The electronic system can be 
regarded as a heavy CM particle with internal degrees of freedom represented by the 
relative motion of the electrons. The electric field exerts a force on this particle, which 
is balanced by the frictional force due to the electron-ion scattering within the particle. 

In the linear regime fB reproduces equation (5) .  In analogy with the resistivity 
formulations its higher-order contributionscan be shown [17-191 to diverge if the proper 
order of the limits is taken; also here the summation of the diverging terms leads to a 
finite result [19] that agrees with (1). These results are found in the absence of a heat 
bath or processes like electron-electron ( e x )  scattering that can bring the electrons into 
thermodynamic equilibrium in the CM system. Chen er al [20] have shown that the 
divergences disappear when e-e scattering is included and the result lies in between 
those of (1) and (5). For very strong e-e scattering, equation (5 )  is regained. The FB 
method has been very successful in providing results that compare quantitatively well 
withexperimentalresults[21-24] forawide range of electric field strengths. Furthermore 
the results reproduce successfully the results from Monte Carlo simulations [23,24]. 

All theories of impurity resistivity discussed above have one of the two results 
presented in (1) and (5). These results are the same for zero temperature but differ for 
finite temperatures. In the present work we study how the newly proposed generalized 
Drude approach (GDA) [25] and the dynamical theory of Farvacque 1261 compare with 
other theories. The numerical results are presented in section 2 and in section 3 a 
simplified treatment with the generalized Thomas-Fermi screening is reported. Section 
4 is devoted to a derivation showing that the Boltzmann equation with the assumption 
of very strong electron-electron scattering reproduces a force-balance type of equation 
with (5) as solution. We also show that in the presence of e-e scattering a result in 
between those of (1) and (5) is obtained. Finally, in section 5 we give a summary and 
conclusions. 

2. Impurity resistivity in GaAs 

For the calculations in this work we assume that the donors are randomly distributed 
and that the impurity potential can be approximated by a pure Coulomb potential. We 
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use the values 13.0 and 0.06m, for the dielectric constant K and effective mass m*, 
respectively. The calculations are performed for a donor density n of 1.0 x lo1* ~ m - ~ .  
All equations are given in CGS units. 
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With these assumptions the transport time for 6n electron in state k is 

where c(q, 0) is the static temperature-dependent random-phase approximation (RPA) 
dielectric function for the donor electrons in the conduction band. Putting this result 
into (1) and (5) leads to the two different results discussed in the introduction. The 
lifetime zhh from impurity scattering is 

In the dynamical theory of Farvacque [26] a third relaxation time appears, viz. 

wheref(k) is the distribution function and ~k the kinetic energy for state k. This should 
be inserted into (1). 

In CDA [E] one starts from a generalized Drude expression for the dynamical 
conductivity 

ne2 1 
in* l / s ( w )  - iw 

o(w j  = - 

with a complex-valued and frequency-dependent relaxation time. The high-frequency 
expansion of this formula is compared to a rigorous high-frequency result [27] based on 
the Kubo formalism and the expression for the relaxation time is identified. Under 
the assumption that this expression is generally valid, one obtains a formula for the 
conductivity that is presumably valid for the full frequency range. The resistivity is then 
obtained as l/o and is found to be 

This result is actually identical to the result obtained from the so-called energy-loss (EL) 
method [28]. For a polar semiconductor at non-zero frequency the expression is slightly 
more complicated [29]. 

We are here interested in the static result, which can be written as 

where E Z ( q ,  w )  is the imaginary part of c(q, w ) .  This imaginary part can be obtained 
analytically in RPA [30] and can be written as 
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where we have introduced the dimensionless variables 

Q = d 2 k ~  W = hw/4EF M = P c / &  B = P E F ,  (13) 
The dielectric function entering the expressions is the retarded version and the real part 
can be obtained numerically from the imaginary part through the Kramers-Kronig 
dispersion relations. 

The derivative in the numerator of (11) is given by 

where pc  is the chemical potential and p = l /k ,T.  Thus, the resistivity is reduced to 

The temperature dependence enters through p and p c .  The temperature variation 
of  pc is obtained from the following implicit relation [31]: 

wheretheupperlimitisU= (1 + e-A)-'12andA = B M  = P,uc.ForagivenAoneobtains 
B. Then M is obtained as A divided by B. 

Combescot and Combescot [32] used the Boltzmann approach to determine the 
conductivity relaxation time for an electron-hole plasma in silicon in the quantum and 
classicallimits. Their result in theclassical limit, which wasobtainedwith the variational 
Boltzmann equation technique (BEV) , can be used here if properly modified to suit GaAs 
and by letting the mass o f  the holes go to infinity. In our notation the result is 

Now we have all relations needed for a numerical comparison between the results 
from the different theories. We present the resultsin the foimof the reciprocal mobility 
l/p = nep = nela. In figure 1 the long broken curve A is the BE result, i.e. the result 
obtained from putting the transport time of (6) into (1). The full curve B is the result if 
instead of (1) one uses ( 5 ) ,  i.e. this is the result from the resistivity derivations and from 
FB. This result turns out to be numerical identical to the GDA and EL results of (15). 
This identity can also be shown analytically through an integration by parts of ( 5 )  after 
the expression for the transport time has been inserted. The dotted curve C is the result 
from (17), i.e. a BEV result which is valid in the high-temperature limit only and where 
we find it approaches the fulI curve. Finally, the short broken curve D is the Farvacque 
(F) result. This result behaves differently from the others for both high and low tem- 
peratures. 
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Figure 1. The reciprocal mobility as a function of 
TITFforvarious theories applied to doped GAS.  
The long broken curve (---) is the B o k -  
mann result in the absence of e-e scattering. The 
Fullcurve (-) islhe result from force-balance 
type theories, resistivity formulations, the gen- 
eralized Drude approach, theenergy-lossmethod 
andthe Bolmannapproach withverystronge-e 
scattering. The dotted curve (. . . . .)represents 
the high-temperature limit 01 a simple variational 
solution to the Boltzmann equation. The short 
broken curve ( - - - - )  is the resuli from the 
dynamical theory of Farvacque. 

10’’ 1 10 
T I  TF 

Figure 2. The square of the inverse generalized 
ThomwFermi screening length as a function of 
TIT, (full curve). The dotted curves are the cor- 
responding high- and low4emperature limits. All 
curves are normalized to the ordinary T h o m e  
Fermi result. 

In the next section we repeat the calculations with a simplified screening, the gen- 
eralized Thomas-Fermi screening, which leads to analytical results for the relaxation 
times. 

3. The generalized Thomas-Fermi screening 

The generalized Thomas-Fermi (GTF) screening gives rather accurate results especially 
in the high-temperature region. It has the advantage over the full RPA screening in that 
the relaxation times can be found analytically, which reduces the computation time. The 
dielectric function in GTF screening is 

which can be rewritten as 
mxe2 1 d B  

nh2Kk,  Q2 dA E(q.0, T )  = 1 + 
where the variables Q and E were defined in (13) and A in connection with (16). This 
dielectric function has the following limiting forms: 

2m*e2 1 
3 d i 2 ~ k F  Q2 c(q.0.  T ) =  1 + - E  T+ Debye-Hiickel(DH) 

c(q,O)= 1+-- T+O Thomas-Fenni (TF). 
m*ez 1 

z h 2 K k F Q 2  
In figure 2 the temperature dependence of q& normalized to its zero-temperature 
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Figure 3. The three main curves of figure 1 (full 
curves) together with the corresponding results 
(dotted curves) when the screening has been 
treated in the simplified generalized Thomas- 
Fermi approximation. 

Figure 4. The three main curves of figure 1 (full 
curves) together with their corresponding high- 
temperature limits (dotted curves). 

value q& is shown together with the corresponding high- and low-temperature limits. 
With this normalization the results are universal for bands with parabolic energy disper- 
sion. 

The transport time (6) is in GTF screening reduced to 

Similarly, the relaxation time (8) in the theory of Farvacque is reduced to 

The results for the reciprocal mobility when using GTF screening is shown in figure 3 as 
dotted curves. The full curves are the corresponding full RPA results. Obviously GTF is 
very good for high temperatures and acceptable for low temperatures, at least for the 
doping density considered here. 

For zero temperature all theories treated here except that of Farvacque give one and 
the same result. When using the GTF screening this result can be found in the following 
analytical form: 

The high-temperature limit of the reciprocal mobility for GDA, EL and FB is given by 

(24) 
exp( -/3fi2q2/Sm*) 

2 2  ’ lJ 3K2 loE dq d1 + &H/q ) 
1 4(2zm*)%/33/2e3 -= 

For BE and F the result is of the following form: 
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1 3 (2~m*) ' " (m*)~  1 .,., ,"-,.",."-", .*.", -= v 2efiS6@ J; dk k4a(k) exp(-6h2k2/2m*)' 

In the BE case the relaxation time is the one in (21) with qCTFreplaced byqDH. For F the 
relaxation time of (22) reduces to 

The results wit11 this high-temperature approximation are displayed in figure 4 as the 
dotted curves in comparison with the full curves, which are the corresponding full RPA 
results of figure 1. 

4. Boltzmann equation with electron-electron scattering 

In this section we first study the Boltzmann equation under the assumption of very strong 
e-e scattering and then we solve it  in the presence of e-e scattering of general strength. 

The Boltzmann equation says that for the steady-state condition the occupation 
number for a state k is unchanged with time, i.e. 

[~f(k)/atI,,,,, + [af(k)/arlfieLd = 0 (27) 

or in words. the filling of a state by the field is exactly balanced by the net scattering out 
of the state. If the only scattering process is impurity scattering, equation (27) results in 

where the left-hand side is the filling rate of state k by the field and the right-hand side 
is the net scattering out of the state. The right-hand side consists of two terms where the 
first gives the scattering out of state k and the second the scattering in.  In the derivation 
of the lifetime only the first term is present. Linearizing the equation and keeping only 
the lowest-order terms gives 

eEafn(k) ae, 8e'm*neE afn(k) dE1 
r(k) -- 

f i  a E k  ak fi3K' h JE, ak 
____=___  

and _. 

To obtain (29) we used the relation 

f(k) = f o [ k  + er(k)E/fi] (31) 
which can be viewed as the definition of T(k). After integration over angles in (30), 
cquation (6) is obtained. 

Forpureimpurityscatteringthereisacomplete balance between the fillingofastate 
by the field and the net scattering out by impurity scattering. When e-e scattering is 

. 
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present the net scattering out is shared between the two scattering processes. The two 
processes are quite different. Only the impurity scattering contributes directly to the 
resistivity. If the field is turned off, the impurity scattering slows down the centre-of- 
mass (CM) velocity while the e-e scattering has no direct effect on the CM. The e-e 
scattering thermalizes the electrons in the c M  system. This thermalization, however, has 
an effect on the impurity scattering, which means that e-e scattering indirectly influences 
the CM motion. 

In the case ofverystronge-escattering the Boltzmann equationiseasilysolved. The 
thermalization in this case is complete, which means that the distribution function is a 
Fermi-Dirac distribution function rigidly shifted in momentum space. Thus, the z 
defined in (31) is now k-independent. The total momentum change per unit time 
produced by the field (i.e. the force) is balanced by the total momentum change due to 
the impurity scattering. The total momentum reduction due to impurity scattering is 
obtained by multiplyingthe right-hand-sideof(28) byhkandsummingover allmomenta 
k. Thus, 
F = -eEN = -1 2v d’k-fd’q 8e4m*n 

( 2 4  h ’ K 2  

where N and V are the total number of electrons and the volume of the system, 
respectively. Using (31), linearized and with a constant r gives 

Part of the expression on the right-hand side can be identified as l/s(k), which leads to 

This gives 

hk Jfo(k) 1 
cos*(k,E)hk,--= 

m 88, T(k) (35) 

d’k Jfo(k) 1 

Thus (5) is valid in the case of very strong e-e scattering. 
For general strength of the e+ scattering we have 

[af(k)/JtI% + [Jf(k)/adZtt + [af(k)/JfIfie~ = 0. (36) 

The first term, which comes from impurity scattering, is given by the right-hand side of 
(27) with reversed sign. Defining r(k) according to (31) the term can be transformed 
into the right-hand side of (29) with reversed sign. Part of this expression is identified as 
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the inverse transport time from impurity scattering l / ~ , , ~ ( k )  given in (30). Thus we can 
write 
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Up till now we have not used the relaxation-time approximation. We do this for the 
e-e scattering and find 

[TI IEatf - rM b a E k  ak 

where the numerator on the right-hand side of the first line is the difference between the 
distribution function and the Fermi-Dirac distribution function in the centre-of-mass 
system. 

(38) 
af(k)  s-c - - f ( k ) - f ' ( k + e E ( r ( ~ ) ) / t r )  =- T ( k ) - ( T ( k ) )  eE a f ' ( k )  ask 

Now, (36) can be written as 

(39) 
eE afo(k)  as, r (k)  eE @(k) ask r (k)  -(r(k)) eE afo(k) ask 
6 as, dk T,mp(k) n a C k  ak T, h ask  dk 

0. -= + - 

After reduction and rearrangement we get 

and averaging both sides as prescribed in (2) results in 

Here we see that for vanishing e-e scattering ( ~ ( k ) )  = (rmp(k)), i.e. equation (1) is 
obtained. On the other hand very stronge-e scatteringgives(r(k)) = l/(l/rimp(k)) and 
equation (5) is regained. 

In summary, we have in this section shown that the solution of the Boltzmann 
equation with inclusion of e-e scattering gives a result in between those of (1) and (5); 
the result (5) is obtained if the e+ scattering dominates over the e-i scattering. This is 
in complete agreement with the results from the force-balance method as shown in [20]. 

5. Summary and conclusions 

We have studied how the results from the generalized Drude approach for impurity 
resistivity and the dynamical theory of Farvacque compare numerically with the two 
different results that are obtained from other theories: straightforward solution of the 
Boltzmann equation or summation of a selected infinite subclass of diagrams in a 
diagrammatic perturbation expansion based on the Kubo formalism give result number 
one; microscopic resistivity formulations, force-balance theories, the energy-loss 
method and a simple variational solution to the Boltzmann equation give result number 
two. Both results numbers one and two are identical for zero temperature but are 
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different for finite temperatures. We found that the generalized Drude approach gave 
results identical to those from the energy-loss method and consequently gave the second 
result. The result from the dynamical theory of Farvacque tumed out not to belong 
to any of the two groups of results mentioned above. The results deviated in both 
temperature limits. In an effort to explain this behaviour we have tried to follow the 
derivation of the theory as given in [26 ] .  We cannot see the validity in the term-by-term 
identification in equation (22) of that reference. If we first rearrange the terms on the 
right-hand side of the equation by substituting k-q for k in the first term of the summand 
and then make a term-by-term identification we obtain for 1/z not our (8) but our (6), 
i.e. the usual result. 

The Boltzmann derivation produce a deformed distribution function in the centre- 
of-masssystem. If the e+ scattering is strong enough to thermalize theelectrons, i.e. to 
make the distribution function a pure Fermi-Dirac distribution function in the centre- 
of-mass system, the Boltzmann derivation produces the second of the results mentioned 
above. Thermalized electrons are equivalent to a constant z. In the variational solution 
to the Boltzmann equation one uses s(k) as a variational function. In the simplest 
variational solution, i.e. keeping r constant, the second result is once again obtained. 
Using a series of variational functions with increasing flexibility gradually moves the 
result towards result number one; we should add that this is in the absence of e e  
scattering. 

The correct result probably lies somewhere in between the results numbers one and 
two. Where exactly it lies depends on the degree of thermalization. Quantitative results 
for the degree of thermalization for strong electric fields and high temperatures have 
been obtained in [33]. 
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